3.1.1. Г. Мендель и его опыты
Как уже упоминалось в теме 1, долгое время материальный субстрат наследственности представлялся гомогенным веществом. Считалось, что наследственное вещество родителей смешивается у потомства подобно двум взаиморастворимым жидкостям. В соответствии с этой точкой зрения гибриды, то есть организмы, полученные в результате объединения наследственного материала различающихся форм, должны представлять собой нечто промежуточное между родителями. И действительно, многие гибриды соответствуют таким представлениям.
          Однако в конце XIX в. некоторые исследователи наблюдали у гибридов такую изменчивость, которую нельзя было объяснить с точки зрения концепции о неделимости и гомогенности наследственных задатков. Одним из этих исследователей был Грегор Мендель. Г.Мендель первым показал, что наследственные задатки не смешиваются, а передаются из поколения в поколение в виде неизменных дискретных единиц. Наследственные единицы передаются через мужские и женские половые клетки - гаметы. У каждой особи наследственные единицы встречаются парами, тогда как в гаметах находится лишь по одной единице из каждой пары.
          Г. Мендель назвал единицы наследственности "элементами". В 1900 г., когда законы Менделя были открыты повторно и получили признание, единицы наследственности были названы "факторами". В 1909 г. датский ученый В. Иогансен дал им другое имя - "гены", а в 1912 г. американский генетик Т. Морган показал, что гены находятся в хромосомах.
          С чего же начинал свои исследования Г. Мендель? Успех Г. Менделя во многом обусловлен удачным выбором экспериментального объекта. Г. Мендель работал с различными сортами гороха. По сравнению с другими растениями горох обладает рядом преимуществ для проведения экспериментов по скрещиванию.

Во-первых, сорта гороха четко различаются по ряду признаков (это означает, что Г. Мендель экспериментировал с качественными признаками, полиморфизмами).
Во-вторых, горох является самоопыляющимся растением, тем самым поддерживается чистота сорта, то есть сохранение признака из поколения в поколение.
В-третьих, можно путем искусственного опыления скрещивать растения и получать нужные гибриды. Гибриды также могут давать потомство, то есть являются плодовитыми, что, кстати, встречается не всегда. Иногда гибриды при отдаленном скрещивании бесплодны.
Г. Менделю удалось подобрать такие пары контрастирующих признаков, которые, как это было установлено позже, обладают простым типом наследования. Г. Менделя интересовали такие признаки, как форма семян (гладкая или морщинистая), окраска семян (желтая или зеленая), окраска цветков (белые или окрашенные) и некоторые другие.
          Подобные опыты по гибридизации растений не раз проводились и до Г. Менделя, но никто не смог получить таких всеобъемлющих данных, а главное, усмотреть в них закономерности наследственности. Следует особо остановиться на тех моментах, которые обеспечили Г. Менделю успех, поскольку его исследование можно считать образцом проведения всякого научного эксперимента. Прежде чем начать основные эксперименты, Г. Мендель провел предварительное исследование экспериментального объекта и тщательно спланировал все эксперименты (см. рис. "Опытный садик Г. Менделя во дворе монастыря в Брио"; "Памятник Г. Менделю во дворе монастыря в Брио"). Основным принципом исследования была поэтапность - все внимание сначала концентрировалось на одной переменной, что упрощало анализ, затем Т. Мендель приступал к анализу другой. Все методики строжайше соблюдались, чтобы не вносить искажения в результаты; полученные данные тщательно регистрировались. Г. Мендель провел множество экспериментов и получил достаточное количество данных для обеспечения статистической достоверности результатов. В выборе же экспериментального объекта Г. Менделю, действительно, во многом повезло, поскольку на наследовании отобранных им признаков не сказывались некоторые более сложные закономерности, открытые позднее.


3.1.2. Моногибридное скрещивание и первый закон Менделя
Изучая результаты скрещивания растений с альтернативными признаками (например, семена гладкие - семена морщинистые, цветки белые - цветки окрашенные), Г. Мендель обнаружил, что гибриды первого поколения (F1), полученные с помощью искусственного опыления, не являются промежуточными между двумя родительскими формами, а в большинстве случаев соответствуют одной из них. Например, при скрещивании растений с окрашенными и белыми цветками все потомство первого поколения имело окрашенные цветки (табл. 3.1). Тот признак родителя, которым обладали растения первого поколения, Г. Мендель назвал доминантным (от латинского dominans - господствующий). В приведенном примере доминантным признаком является наличие окраски у цветков.
          От экспериментально полученных гибридов уже путем самоопыления Г. Мендель получил потомство второго поколения (F2) и обнаружил, что эти потомки не являются одинаковыми: часть из них несет признак того родительского растения, который не проявился у гибридов первого поколения. Таким образом, признак, отсутствовавший в поколении F1, вновь проявился в поколении F2. Г. Мендель сделал вывод, что этот признак присутствовал в поколении Fl в скрытом виде. Г. Мендель назвал его рецессивным (от латинского recessus -- отступление, удаление). В нашем примере рецессивным признаком будут белые цветки.
          Г. Мендель провел целую серию аналогичных опытов с разными парами альтернативных признаков и всякий раз тщательно подсчитывал соотношение растений с доминантными и рецессивными признаками. Во всех случаях анализ показал, что отношение доминантных признаков к рецессивным в поколении F2 составляло примерно 3:1.
          В третьем поколении (F3), полученном так же путем самоопыления растений из поколения F2, оказалось, что те растения из второго поколения, которые несли рецессивный признак, дали нерасщепляющееся потомство; растения с доминантным признаком частично оказались нерасщепляющимися (константными), а частично дали такое же расщепление, как и гибриды F1 (3 доминантных на 1 рецессивный).
          Заслуга Г. Менделя в том, что он понял: такие соотношения признаков в потомстве могут быть только следствием существования обособленных и неизменяющихся единиц наследственности, передаваемых с половыми клетками от поколения к поколению. Г. Мендель ввел буквенные обозначения для доминантного и рецессивного факторов, причем доминантные обозначались большими буквами, а рецессивные - маленькими. Например: А - цветки окрашенные, а - цветки белые; В - семена гладкие, b - семена морщинистые.

Выводы Менделя сводились к следующему:
Поскольку исходные сорта являются чистыми (не расщепляются), это означает, что у сорта с доминантным признаком должно быть два доминантных фактора (АА), а у сорта с рецессивным признаком - два рецессивных (аа).
Половые клетки содержат только один фактор (у доминантного - А, у рецессивного - а).
Растения первого поколения F1 содержат по одному фактору, полученному через половые клетки от каждого из родителей, то есть А и а (Аа).
В поколении F1 факторы не смешиваются, а остаются обособленными.
Один из факторов доминирует над другим.
Гибриды F1 образуют с равной частотой два рода половых клеток: одни из них содержат фактор А, другие - а.
При оплодотворении женская половая клетка типа А будет иметь равные шансы соединиться как с мужской половой клеткой, несущей фактор А, так и с мужской клеткой, несущей фактор а. То же справедливо и для женских половых клеток типа а.
Это можно представить в виде таблицы (см. табл. 3.2). Из таблицы ясно, что возможны 4 различных комбинации, из которых лишь одна не содержит доминантного фактора, поэтому в этом случае будет наблюдаться рецессивный признак. Оставшиеся 3 комбинации дадут растения с доминантным признаком, из которых одна часть (АА) даст в дальнейшем константное, нерасщепляющееся потомство, а оставшиеся 2 части опять дадут- расщепление в отношении 3:1 (см. также табл. 3.1).
          В своей работе Г. Мендель не сформулировал никаких законов, которые сейчас широко известны под именем законов Г. Менделя. За него это сделали другие исследователи, которые повторно открыли менделевские закономерности. Тем не менее основополагающие законы генетики по праву носят имя их первооткрывателя.
          Первый закон Менделя, или закон расщепления, формулируется так. При образовании гамет происходит разделение пары наследственных родительских факторов, так что в каждую гамету попадает только один из них. Согласно этому закону, признаки данного организма детерминируются парами внутренних факторов.
          Самое главное в открытии Г. Менделя - это демонстрация того, что гибриды F1, несмотря на внешнее проявление лишь одного признака, образуют гаметы более чем одного типа, которые с равной частотой несут как доминантный, так и рецессивный факторы. Прежде считалось, что гибриды, которые на практике часто представляют собой промежуточные формы, образуют половые клетки, так же обладающие промежуточной конституцией. Г. Мендель показал, что наследственные единицы постоянны и дискретны. Они передаются в неизменном виде из поколения в поколение. Они не изменяются, а лишь перегруппировываются.
          Эксперименты Г. Менделя по скрещиванию растений с одной парой альтернативных признаков являются примером моногибридного скрещивания.


3.1.3. Дигибридное скрещивание и второй закон Менделя
Установив закономерности расщепления при скрещиваниях по одной паре альтернативных признаков, Г. Мендель перешел к изучению наследования двух пар таких признаков.
          Скрещивание особей, несущих две пары различающихся признаков (например, гладкие и одновременно желтые семена и морщинистые и одновременно зеленые семена), носит название дигибридного скрещивания.
          Допустим, что одно родительское растение несет доминантные признаки (гладкие желтые семена), а другое - рецессивные признаки (морщинистые зеленые семена). Г. Мендель уже знал, какие признаки доминантны, и то, что в поколении F1 все растения имели гладкие желтые семена, не было удивительно. Г. Менделя интересовало расщепление признаков во втором поколении F2.

Соотношение разных сочетаний признаков оказалось таким:
гладких желтых - 9,
морщинистых желтых - 3,
гладких зеленых - 3,
морщинистых зеленых - 1,
то есть 9:3:3:1.
Таким образом, в поколении F2 появилось два новых сочетания признаков: морщинистые желтые и гладкие зеленые. На основании этого Г. Мендель сделал заключение, что наследственные задатки родительских растений, которые объединились в поколении F1, в последующих поколениях разделяются и ведут себя независимо - каждый признак из одной пары может сочетаться с любым признаком из другой пары. Это открытие Г. Менделя получило название второго закона Менделя, или принципа независимого распределения.
          Расщепление при дигибридном скрещивании также можно себе представить в виде таблицы, если доминантные факторы обозначить буквами А и В, а рецессивные - а и b. Тогда родительские формы будут ААВВ и aabb, их гаметы - АВ и ab, а гибриды первого поколения F1 - АаВb. Соответственно у этих гибридов возможны четыре типа гамет, что и представлено в таблице 3.3.
          Запись такого рода (в виде таблицы), которой мы пользуемся уже второй раз, носит название решетки Пеннета. Она позволяет свести к минимуму ошибки, которые могут возникнуть при составлении всех возможных сочетаний гамет.
          Наиболее важное положение, следующее из второго закона Менделя, состоит в том, что наследственные факторы скрещиваемых сортов при образовании гамет могут образовывать новые сочетания, или рекомбинироватъся (Хрестомат. 3.1).
          Значение открытий Менделя, к сожалению, не было оценено при его жизни. Вероятно, это объяснялось тем, что в то время еще не удалось определить структуры в гаметах, через которые осуществляется передача наследственных факторов от родителей к потомкам. Только к концу XIX в. в связи с повышением разрешающей способности микроскопов стали вестись наблюдения за поведением клеточных структур во время оплодотворения и деления клеток, что привело к созданию хромосомной теории наследственности.

Выводы
Открытие дискретного характера наследственности принадлежит Г. Менделю.
Наследственные единицы передаются из поколения в поколение в неизменном виде.
Признаки организма детерминируются парами наследственных единиц.
При образовании половых клеток (гамет) парные наследственные единицы расходятся, и в каждой гамете бывает представлена лишь одна из них.
В процессе образования гамет наследственные единицы перегруппировываются (рекомбинируются), что приводит к новым сочетаниям признаков у потомства.


3.2. Хромосомная теория наследственности
3.2.1. Возникновение хромосомной теории наследственности
3.2.2. Два типа клеточного деления
3.2.3. Хромосомы человека
3.2.4. Рекомбинация хромосом в процессе образования половых клеток
3.2.5. Сцепление и кроссинговер
3.2.6. Генетическая уникальность индивида

3.2.1. Возникновение хромосомной теории наследственности
То, что организмы состоят из клеток, впервые было обнаружено еще в XVII в., но лишь в 1831 г. была открыта главнейшая часть клетки - клеточное ядро. Впоследствии выяснилось, что ядро также дифференцировано и состоит из различных компонентов. В 1848 г. были впервые описаны наиболее важные его компоненты - хромосомы, однако их особенности и функциональное значение начали активно изучать лишь в конце XIX в.
          Термин "хромосома" буквально означает "окрашивающееся тело". Дело в том, что хромосомы поглощают и удерживают некоторые красители, благодаря чему их легко выявлять и наблюдать под микроскопом. В неделящихся клетках хромосомы, как правило, не видны, и лишь при делении клеток они четко обозначаются как тельца специфической формы (рис. 3.1 и 3.2). С развитием и совершенствованием микроскопии стало возможным наблюдать поведение хромосом в процессе образования гамет и при оплодотворении.
          Еще в 1875 г. было обнаружено, что в процессе оплодотворения происходит слияние одной мужской и одной женской половых клеток, причем происходит слияние ядер яйцеклетки и сперматозоида. В 1880-х гг. было описано поведение хромосом во время деления клеток, и лишь в начале 1900-х гг., уже после повторного открытия законов Менделя, было замечено поразительное сходство между передачей менделевских факторов и поведением хромосом во время образования гамет и оплодотворения. На основании этих наблюдений было высказано предположение, что именно хромосомы являются носителями менделевских факторов. Это привело к возникновению хромосомной теории наследственности.
          Поскольку хромосомы представляют собой главный материальный субстрат, обусловливающий сходство между поколениями и лежащий в основе биологической изменчивости, очень важно знать, как ведут себя хромосомы в различных клетках.


3.2.2. Два типа клеточного деления
В 1879 г. были описаны процессы, происходящие в ядре при образовании двух идентичных клеток. Подобные деления клеток происходят во время процессов роста и регенерации тканей. В 1887 г. было высказано предположение, что в процессе образования гамет осуществляется другой тип клеточного деления.
          Деление первого типа, характерное для процессов размножения соматических клеток, т.е. клеток тела, было названо митозом, а деление второго типа, приводящее к образованию половых клеток (гамет), получило название мейоза. Процессы, происходящие в клетках во время митоза и мейоза, во многом похожи, но результаты получаются совершенно различными (рис. 3.3).
          Митоз - это такое деление клеточного ядра, при котором образуются два дочерних ядра с наборами хромосом, идентичными наборам родительской клетки. Вместе с делением ядра происходит и деление цитоплазмы на две равные части, и восстановление клеточной мембраны. Митотическое деление приводит к увеличению числа клеток, обеспечивая процессы роста, регенерации и замещения клеток у всех высших животных и растений.
          Мейоз - это процесс деления клеточного ядра с образованием четырех дочерних ядер, каждое из которых содержит вдвое меньше хромосом, чем исходное ядро, поэтому его еще называют редукционным (от лат. reductio - уменьшение). При мейозе в родительской клетке сначала происходит однократное удвоение хромосом (как в митозе), но вслед за этим следуют два цикла ядерных (и клеточных) делений - первое деление мейоза и второе деление мейоза. Редукция числа хромосом происходит уже в процессе первого деления мейоза. Таким образом, при мейозе ядро делится дважды, а хромосомы удваиваются только один раз. В результате образуются четыре клетки, в которых число хромосом в два раза меньше, чем в родительской.
          Мейоз обеспечивает сохранение в ряду поколений постоянного числа хромосом у видов с половым размножением. В связи с тем, что при оплодотворении происходит слияние материнского и отцовского ядер, их хромосомы объединяются. Если бы в процессе образования гамет не происходило редукции числа хромосом вдвое, то при слиянии гамет в процессе оплодотворения число хромосом должно было бы непрерывно увеличиваться и приводить к искажению видовых свойств потомства.